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ABSTRACT 

All-electric satellites are gaining favor among the manufacturers and operators of 

satellites in Geostationary Earth Orbit (GEO) due to cost saving potential. These satellites have 

the capability of performing all propulsive tasks with electric propulsion including transfer to 

GEO. Although fuel-efficient, electric thrusters lead to long transfer, during which the health and 

the usability of spacecraft is affected due to its exposure to hazardous space radiation in the Van 

Allen belts. Hence, determining electric orbit-raising trajectory that minimize transfer time is 

crucial for all-electric satellite operation.  

This thesis proposes a novel method to determine minimum-time orbit-raising trajectory 

by blending the ideas of direct optimization and guidance-like trajectory optimization schemes. 

The proposed methodology is applicable for both planar and non-planar transfers and for 

transfers starting from arbitrary circular and elliptic orbits. Therefore, it can be used for rapidly 

analyzing various orbit-raising mission scenarios. The methodology utilizes the variational 

equations of motion of the satellite in the context of the two-body problem by considering the 

low-thrust of an electric engine as a perturbing force. The no-thrust condition due to Earth’s 

shadow is also considered. The proposed methodology breaks the overall optimization problem 

into multiple sub-problems and each sub-problem minimizes a desired objective over the sun-lit 

part of the trajectory. Two different objective types are considered. Type I transfers minimize the 

deviation of the total energy and eccentricity of final position from the GEO, while type II 

transfers minimize the deviation of total energy and angular momentum. Using the developed 

tool, several mission scenarios are analyzed including, a new type of mission scenarios, in which 

more than one thruster type are used for the transfer. The thesis presents the result for all studied 

scenarios and compares the performance of Type I and Type II transfers.  



TABLE OF CONTENTS 

 
Chapter Page 
 

vi 

1. INTRODUCTION .............................................................................................................. 1 

1.1 Literature Survey .................................................................................................... 4 
1.1.1 Indirect Optimization Methods ...................................................................... 4 
1.1.2 Direct Optimization Methods ........................................................................ 5 
1.1.3 Shape-based methods ..................................................................................... 6 
1.1.4 Closed-Loop Guidance-Like Schemes .......................................................... 6 

1.2 Research Objective and Thesis Contributions ........................................................ 7 

1.3 Thesis Organization ................................................................................................ 8 

2. MATHEMATICAL FORMULATION OF SPACECRAFT MOTION............................. 9 

2.1 Two-Body Equation of Motion ............................................................................... 9 
2.1.1 Specific Total Energy .................................................................................. 10 
2.1.2 Specific Angular Momentum Vector ........................................................... 10 
2.1.3 Eccentricity Vector ...................................................................................... 11 

2.2 Solutions to the Two-Body Problem..................................................................... 11 
2.2.1 Flight Path Angle ......................................................................................... 13 
2.2.2 Radius-Sweeping Area per Time ................................................................. 13 
2.2.3 True Anomaly Angle ................................................................................... 15 

2.3 Spacecraft Motion under Perturbing Forces ......................................................... 15 
2.3.1 Variation of Total Energy ............................................................................ 17 
2.3.2 Variation of Angular Momentum Vector .................................................... 18 
2.3.3 Variation of Eccentricity Vector .................................................................. 21 

3. PROBLEM DESCRIPTION AND SOLUTION METHOD ............................................ 23 

3.1 Problem Descriptions ............................................................................................ 23 
3.1.1 Geostationary Earth Orbit ............................................................................ 23 

3.1.2 Electric Thruster........................................................................................... 24 
3.1.3 Modeling Shadow of the Earth .................................................................... 25 

3.2 Methodology ......................................................................................................... 27 

3.2.1 Concepts of Methodology and Assumption ................................................. 27 
3.2.2 Objective Function ....................................................................................... 28 

3.2.3 Direct Optimization Scheme ........................................................................ 31 

4. ALL-ELECTRIC ORBIT-RAISING SCENARIOS......................................................... 37 

4.1 Trajectory Optimization without Eclipse Considerations in Planar Case ............. 37 
4.2 Trajectory Optimization with Eclipse Considerations in Planar Case .................. 40 
4.3 Trajectory Optimization with Eclipse Considerations in Non-Planar Case .......... 43 
4.4 Trajectory Optimization with Switching Engine in Planar case ........................... 46 



TABLE OF CONTENTS (continued) 

 
Chapter Page 

 

vii 

5. CONCLUSION AND FUTURE WORK ......................................................................... 48 

6. REFERENCES ................................................................................................................. 51 

 
 



LIST OF TABLES 

 
Table Page 
 

viii 

1.1 REPRESENTATIVE OF ELECTRIC PROPULSION DEVICES [1]…………………....2 

2.1 CHARACTERISTIC OF FOUR DIFFERENT ORBIT TYPES…..…………………….12 

4.1 TRANSFER TIME WITHOUT ECLIPSE CONSIDERATION IN PLANAR CASE….37 

4.2 TRANSFER TIME WITH ECLIPSE CONSIDERATION IN PLANAR CASE.............40 

4.3 TRANSFER TIME WITH ECLIPSE CONSIDERATION IN NON-PLANAR CASE...42 

4.4 TRANSFER TIME OF ENGINE SWITCH SCENARIO……………………………….46 

TABLE 1.1 .......................................................................................................................... 2 

TABLE 2.1 ........................................................................................................................ 12 

TABLE 4.1 ........................................................................................................................ 38 

TABLE 4.2 ........................................................................................................................ 41 

TABLE 4.3 ........................................................................................................................ 43 

TABLE 4.4 ........................................................................................................................ 47 

 

 



LIST OF FIGURES 

 
Figure Page 
 

ix 

2.1 The types of conic sections ............................................................................................... 12 

2.2 Description of flight path angle ........................................................................................ 13 

2.3 Triangle from sweeping radius ......................................................................................... 14 

2.4 Example of low-thrust trajectory of a planar case ............................................................ 17 

2.5 Rotation direction of angular momentum vector .............................................................. 20 

3.1 Graphical explanation of GEO (Not to Scale) .................................................................. 23 

3.2 Definition of Thrust Vector .............................................................................................. 25 

3.3 Shadow geometry stretching to infinity ............................................................................ 26 

3.4 Trajectories of elliptical orbit (left) and circular orbit (right) with absence of thrust in   

eclipse which is the dash line ............................................................................................ 27 

3.5 Graphical Definition of Vector I  .................................................................................... 31 

3.6 Segments of an orbit along true anomaly angle ................................................................ 31 

3.7 Flow chart of optimization process for planar case .......................................................... 34 

4.1 Type I transfer from GTO to GEO ................................................................................... 39 

4.2 Type II transfer from GTO to GEO .................................................................................. 39 

4.3 Type I transfer from GTO to GEO with eclipse consideration ......................................... 42 

4.4 Type II transfer from GTO to GEO with eclipse consideration ....................................... 42 

4.5 Type II transfer from GTO with inclination of 28.5 degree to GEO with eclipse 
consideration ..................................................................................................................... 44 

4.6 Projection of type II transfer from GTO with inclination of 28.5 degree to GEO on x-y 
plane with eclipse consideration ....................................................................................... 44 



LIST OF FIGURES (continued) 

 
Figure Page 
 

x 

4.7 Projection of type II transfer from GTO with inclination of 28.5 degree to GEO on x-z 
plane with eclipse consideration ....................................................................................... 45 

4.8 Type II transfer from GTO with inclination of 15 degree to GEO with eclipse 
consideration in 3D ........................................................................................................... 45 

4.9 Projection of type II transfer from GTO with inclination of 15 degree to GEO on x-z 
plane with eclipse consideration ....................................................................................... 46 

 



NOMENCLATURE 

xi 

Abbreviations 

GEO   Geostationary Earth Orbit 

GTO   Geostationary Transfer Orbit 

IPOPT   Interior Point Optimizer 

LEO   Low Earth Orbit 

MPDT   Magnetoplasmadynamic Thruster 

SNOPT  Sparse Nonlinear Optimizer 

TPBVP  Two-Point Boundary-Value Problem 

 



NOMENCLATURE (continued) 

xii 

E     Specific Total Energy 

e     Eccentricity 

F     Force 

G     Gravitational Constant (6.673x10-11 N(m/kg)2) 

h     Specific Angular Momentum 

spI     Specific Impulse 

m     Mass 

earthm     Mass of the Earth (5.971x1024 kg) 

/s cm     Mass of the Spacecraft 

h     Specific Angular Momentum Vector 

GEOh     Specific Angular Momentum of Geostationary Earth Orbit 

e     Eccentricity Vector 

GEOe     Eccentricity of Geostationary Earth Orbit 

r     Radius Vector 

Er     Radius of the Earth 

t     Time 

T     Thrust 

v     Velocity 

w     Weight Parameter 

x , y , z    Cartesian Coordinates 

      Time Rate of Change 



NOMENCLATURE (continued) 

xiii 

 
^

    Unit Vector 

      Approximated Quantity 

      Quantity at the End of a Revolution 

 
r
    Vector in Direction of Radius Vector 

 
n
    Vector in Direction of Local Horizon Vector 

 
h
    Vector in Direction of Angular Momentum Vector 

Greek Letters 

     Angle between Local Horizon and Projection of Thrust in  
Orbit on Orbit Plane 

     Angle between Thrust and Orbit Plane 

     Flight Path Angle 

     Earth Gravitational Constant 

     True Anomaly Angle 

ω     Angular Velocity Vector 

 



 

1 

         CHAPTER 1 

1. INTRODUCTION 

 
Recently, the popularity of the all-electric satellites is growing among the satellites 

manufacturers and operators of telecommunication satellites. Boeing is manufacturing their 702-

SP all-electric satellite bus architecture1. Several satellite operators, commercial and government, 

are also in the process of obtaining such satellites2. Other manufacturers are also in the process 

of developing such satellites. For these satellites, the electric thrusters perform all propulsive 

tasks including the transfer to the destination orbit which could be Geostationary Earth Orbit 

(GEO). Any object in GEO is always at the same point in the sky. The current practice is to use 

chemical propulsion for the orbit-raising maneuver after the satellites have been launched into 

their initial orbit by a launch vehicle. Usually, this initial orbit is a circular Low-Earth Orbit 

(LEO) with altitude less than 2000 km or an elliptical Geostationary Transfer Orbit (GTO) with 

periapsis altitude lower than 2000 km and apoapsis at the altitude of GEO. Due to the fuel-

efficiency of electric thrusters (e.g. Hall or ion thrusters), the launch mass of the spacecraft could 

be significantly reduced by using electric thrusters for orbit-raising. The reduction of launch 

mass leads to smaller and lighter satellites that can either be launched by a smaller launch vehicle 

or can be stacked together in a larger launch vehicle. Obviously, electric orbit-raising have the 

potential of reducing the launch costs. 

The focus of the current study is the orbit-raising maneuver of all-electric satellites. 

Although fuel-efficient, the orbital transfer using electric thrusters is a slow process because of 

the low thrust generated by electric thrusters. Except for MPDT that have extremely high power 

                                                 

1  Source: http://www.boeing.com/boeing/defense-space/space/bss/factsheets/702/702SP.page 
2  Source: http://www.spacenews.com/article/satellite-telecom/39853news-from-satellite-2014-boeing-electric-
satellite-backlog-poised-to 



 

2 

requirements, the thrust generated by an electric thruster is in the order of 100 mN, as shown in 

Table 1.1. 

TABLE 1.1  

REPRESENTATIVE OF ELECTRIC PROPULSION DEVICES [1] 
 

Thruster Operating 
 Principle 

Operating 
Power (kW) 

Thrust 
Generated (mN) 

Specific 
Impulse (s) Propellant 

Arcjet  

MR-510 
Electrothermal 0.3-2 222-258 500-600 Hydrazine 

Hall Thruster 

 BPT-4000 
Electrostatic 2.5-5.5 134-299 1700-2700 Xenon 

Hall Thruster 

SPT-100B 
Electrostatic 0.66-1.57 43.4-98.8 1600-2500 Xenon 

Ion Thruster 

NSTAR 
Electrostatic 0.5-2.3 19-92 1900-4000 Xenon 

MPDT 

Li-LFA 
Electromagnetic 30-200 10-12.5 x103 1500-8000 Lithium 

 

The power available for today’s telecom satellites is in the range of 5-20 kW. Hence, the solar 

array of telecommunication satellites can be used to operate multiple electric thrusters 

simultaneously in order to increase the amount of available thrust during the transfer. Even then, 

raising orbit to the GEO requires continuous thrusting for several months [1]. With this long 

period of time, it means that the spacecraft has to orbit around the Earth for numerous 

revolutions. The spacecraft would also pass through the shadow of the Earth for numerous times, 

once for each revolution. The presence of spacecraft in the eclipses mean that the solar panel 

cannot generate any power. Therefore, the scheme that thrusters are operated continuously is 
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impossible, unless the onboard energy storage is deployed. However, the onboard energy storage 

leads to an increase of spacecraft mass which partly negates the benefits of electric propulsion. 

An area of energetically charged particles are found between the LEO and GEO, called 

Van Allen belts. The radiation belts are held in place by the Earth’s magnetic field. Due to the 

proximity of this radiation belt to Earth, the spacecraft trajectories usually pass through this 

radiation area. The longer exposure to radiation from Van Allen belts leads to degradation of 

solar panels and is hazardous for other electronics. The minimum time transfer is useful in order 

to reduce the degradation from radiation. Therefore, the minimum transfer time is a crucial factor 

for orbit-raising mission analysis. 

The transfer time depends on several factors. The first factor is the initial orbit where the 

spacecraft is initially launched by a suitable launch vehicle. Obviously, the closer initial orbit to 

GEO leads to smaller transfer time. Next, mass of the spacecraft also affects the transfer time. 

The heavier the spacecraft, the higher is the transfer time. Third, the electric engine uses solar 

array power to generate thrust. The capacity of solar array panels limit the number of thrusters in 

the spacecraft. The engine characteristics affects the thrust produced, which in turn affects the 

transfer time. The last one is the provision of battery which is used as the power sources of 

thruster during the eclipses. A mission designer needs to consider a variety of scenarios to 

understand the impact of the above factors. Due to these several factors, the tools that can 

evaluate the wide range of mission scenarios in an efficient way is necessary. Each mission 

scenario will require the determination of a minimum-time trajectory. 

Determining a minimum-time trajectory requires solving an optimal control problem. In 

the next section, we present the existing methodologies of solving an optimal control problem. 
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1.1 Literature Survey 

The trajectory optimization problem is a problem which relates to designing a trajectory 

that minimize or maximize an objective function. This function can be the transfer time, the final 

mass or solar array degradation along a path. Moreover, a solution trajectory must satisfy the 

equations of motion for the spacecraft. 

The problem of low-thrust trajectory optimization have interested researchers for 

decades. Generally, there are primarily four different ways of generating optimal or near-optimal 

low-thrust trajectories: (1) Indirect optimization methods, (2) Direct optimization methods, (3) 

Shape-based methods and (4) Closed-loop guidance-like schemes. Each method has its own 

advantages and disadvantages. In this section, we provide an overview of the various 

methodologies. 

1.1.1  Indirect Optimization Methods 

Indirect optimization methods utilize the necessary conditions of optimality (obtained 

using calculus of variations [2-4]) to determine an optimal trajectory. The necessary conditions 

are usually a set of ordinary differential equations that need to be solved along with equations of 

motion which are also ordinary differential equations. The boundary conditions are known partly 

at initial time and partly at the final time; so this methodologies require the solution of a two-

point boundary-value problem (TPBVP). 

In 1996, Thorne and Hall [5] introduced the minimum time transfer for circular to 

circular orbit-raising by indirect optimization method. Their strategy was to repeatedly maximize 

the final radius for different flight times, then choosing the time such that the final radius is at the 

destination. Later in 1997, the same authors [6] extended the idea by introducing a 

transformation called “Kustaanheimo-Stiefel” in order to simplify the equation of motion in 
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planar orbit. Later in 2000, this transformation was also used by Marasch and Hall [7] in order to 

obtain low-thrust orbit-raising trajectories eclipse, with or without energy storage support. 

1.1.2  Direct Optimization Methods 

In the direct optimization methods, a trajectory optimization problem is converted into a 

parametric optimization problem by discretizing the time variable, the state and control variables. 

The equations of motion are assumed to hold only at the discretized modes; infact, the set of 

differential equations are converted to a bunch of algebraic equations that are the constraints for 

the parametric optimization problem. This problem is then solved using a non-linear 

programming solver like SNOPT® [8], IPOPT® [9] or LOQO® [10]. Hence, this methodology 

avoids the use of necessary condition of optimality; hence their name direct optimization. In 

comparison to indirect optimization method, this optimization method has the more tolerane of 

initial guesses and could converge to the solution better than indirect methods [3]. 

The coordinate system chosen to define the states affects the performance of this method 

because of the variation of state parameters. Since, these parameters are integrated stepwise by 

numerical integration technique, it does not yield accurate results if there is a rapid change in 

state parameters. One of implementation of direct optimization method for solving the minimum 

transfer time on spherical coordinates has been demonstrated by Dutta, et al. [1]. The direct 

optimization methods were also be implemented by Falck and Dankanich [11] in order to find an 

optimal solution for spiral trajectories on the costates of the classical or modified equinoctial 

orbital elements. Earlier in 2014, Libraro, et al. [12] presented the direct optimization for electric 

orbit-raising with a new state vector called quaternion-based formulation which is globally free 

of any singularity. 
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1.1.3  Shape-based methods 

In the shape-based method, the spacecraft trajectory is assumed to be of a certain shape or 

geometric description. Then, the thrust profile that is required to generate that trajectory shape 

will be determined by satisfying the equation of motion along that trajectory. Shape-based 

methods aim at rapidly investigating the solution trajectory and provide a fast initial guess for the 

continuous-thrust trajectory [13] required for indirect and direct methods.  

Some feasible trajectory shapes that have been investigated by researchers are the 

logarithmic spiral, Cartesian oval and Cassini oval [14]. As demonstrated by Petropoulos and 

Longuski [13] in 2004, the exponential sinusoid shapes in polar coordinates could be used to 

determine the Earth-Mars-Ceres rendezvous trajectories, and selected trajectories are 

successfully used as initial guess for the direct method optimization program. In 2006, De 

Pascale and Vasile introduced trajectory shapes based on non-singular equinoctial element, and 

could yield a good enough initial guess for direct and indirect methods [15]. In 2008, Wall [16] 

introduced a shape called inverse polynomial in cylindrical coordinates. Later in 2009, Wall and 

Conway [17] demonstrated the inverse polynomial shape in polar coordinates for efficient 

generation of near –optimal low-thrust trajectory. In 2011, Novak and Vasile [18] compared the 

exponential sinusoid shape in polar coordinates and equinoctial element based shapes. They 

found that the shaping method in polar coordinates provides better solutions than that in non-

singular equinoctial coordinates. In 2012, finite Fourier series was used to approximate the 

trajectory shapes presented by Taheri and Abdelkhalik [19]. 

1.1.4  Closed-Loop Guidance-Like Schemes 

Closed-loop guidance-like schemes aim to generate the low-thrust trajectory by using 

thrust profile based on some guidance law that minimizes the deviation of current trajectory from 
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the destination trajectory. Therefore, the solution trajectories are obtained by integrating these 

thrust profiles from the initial point till the end point. 

In 1998, Kluever introduced a simple guidance scheme [20] that determines the thrust 

direction in order to maximize the time rate of change of a desired orbital element. The guidance 

scheme, therefore, determines the thrust direction which drives a desired orbital element to its 

target final value as fast as possible. The three orbital parameters considered are semi-major axis, 

eccentricity and inclination. The selected thrust direction is obtained by taking a weighted 

average of those directions. In 2003, Petropoulos introduced a new guidance scheme called “Q-

Law” [21, 22]. The main concept is the evaluation of a “Proximity Quotient” that measures the 

proximity of current orbit and destination orbit. This method not only considered the maximum 

rate of change of orbital element at the current state like Kluever’s scheme, but also considers 

over the whole state thereby including all orbital elements. The solutions generated are close to 

minimum-time solution. 

These closed-loop guidance-like schemes have been implemented for achieving near 

optimal solutions without the need for frequent solution updates. Additionally, these could be 

used for robustly providing the solutions especially for the case of high disturbances which other 

methods could not be able to solve [23]. 

1.2 Research Objective and Thesis Contributions 

The indirect and direct optimization methods still have the drawbacks that are the need of 

the reasonable initial guess and the lack of guarantees of convergences in the context of a tool for 

mission designers for all-electric satellite. These drawbacks lead to the limitations for rapidly 

investigating a wide range of scenarios, unlikely, the shape-based methods and closed-loop 

guidance-like schemes do not have these drawbacks and could be used to rapidly investigate a 

wide range of scenarios. However, that shape-based method is still complicated to determine the 
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initial shape, if it was implemented to solve all-electric orbit-raising to GEO problems. The 

reason is that low-thrust orbit-raising trajectories are usually spiral shapes with many revolutions 

(in the order of hundred/ thousands) which makes finding a shape satisfying equations of motion 

a challenging problem. 

Closed-loop guidance-like schemes have the potential for use in a tool to rapidly 

investigate a wide range of scenarios. In this context, the thesis makes the following 

contributions: 

1) A new formulation blending the ideas of direct optimization and guidance-like 

schemes. 

2) Improvement over the work done by Marasch and Hall [7] by adding the 

capability of yielding the solution for non-planar cases, and non-circular initial 

orbit cases. 

3) Improvement over Q-law in the sense that final orbit achieved is the GEO, owing 

to the non-singularity of the formulation. 

4) Use of the tool in analyzing a new type of mission scenarios involving two 

different thruster types during transfer. 

1.3 Thesis Organization 

The thesis is organized as follows. Chapter 2 describes the spacecraft dynamics and the 

variational equation of motion. Chapter 3 describes the new optimization technique and strategy 

that have been used to determine low-thrust orbit-raising trajectories. The numerical method, 

which is used in implementation of those techniques, will be also described.  In Chapter 4, the 

results of some examples would be demonstrated and discussed. 
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           CHAPTER 2 

2. MATHEMATICAL FORMULATION OF SPACECRAFT MOTION 

Space mechanics is a science that describes the motion of objects in space including 

celestial bodies and spacecraft. A difference between a spacecraft and a natural body is that the 

spacecraft may apply its onboard propulsion system to alter its trajectory. In general, space is a 

multi-body environment, but in the context of electric orbit-raising mission, we will only 

consider two bodies, Earth and the spacecraft. 

2.1 Two-Body Equation of Motion 

The starting point of two-body problem is the Newton’s law of gravitation which 

describes the attractive forces between the two masses. In the case of orbiting spacecraft around 

the Earth, the first assumption is that there are only two bodies under consideration. This 

assumption is good for planetary missions and the effects of other bodies can be modeled as a 

perturbation. Another assumption is that all objects are point masses. This second assumption 

works properly for spherical objects of uniform mass distribution. However, the impact of 

having a non-spherical body can also be modeled as a perturbation, for instance, 2J  effect of 

Earth [24]. 

The motion of the spacecraft relative to the Earth can be described by the following 

equation of motion (for the 2-body problem): 

/
3

( )earth s cG m m

r

r r= -  (2.1) 

where r  is the radius vector from Earth to spacecraft, G is gravitational constant, earthm  is mass 

of the Earth and /s cm  is mass of the spacecraft. The parameter  is used for /( )earth s cG m m  

and then equation (2.1) becomes: 
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3r

r r= -  (2.2) 

The mass of the Earth is much larger than the typical spacecraft mass, so that one can 

approximate   by earthGm , which is equal to 53.986 10  km3s-2. Equation (2.2) can be used 

to describe the motion of spacecraft as long as there is no other force than the mutual 

gravitational force. The constants of motion for the 2-body problem, henceforth referred to as 

dynamical quantities, are specific total energy, specific angular momentum vector and 

eccentricity vector. 

2.1.1 Specific Total Energy 

The specific total energy ( E ) is the total mechanical energy of spacecraft per unit mass, 

and is given by [24]: 

2

2
v

E
r


   (2.3) 

where v  is velocity of the spacecraft. In addition, equation (2.3) is comprised of two terms 

adding together, the kinetic energy per unit mass ( 2 2v ) and potential energy per unit mass (

r ). The potential energy per unit mass term is set to be zero at the infinity as the reference 

point. So it will be more negative as it moves closer to the center of the Earth and never be 

positive. In this thesis, this specific total energy will henceforth be stated only as total energy, 

with the term “specific” dropped out. 

2.1.2 Specific Angular Momentum Vector 

The specific angular momentum (h ) is the angular momentum per unit of mass. It is 

simply defined as [24]: 

  h r r r v=  (2.4) 
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By definition, its direction is always perpendicular to the orbital plane in which the 2-

body motion is constrained. Hence, angular momentum provides the information about the 

orientation of the orbit plane. Later in this thesis, this specific angular momentum would be 

stated only as angular momentum. 

2.1.3 Eccentricity Vector 

Eccentricity e is a vector that points from the center of the central body to the point of 

closest approach (periapsis) of an orbit to the central body. The eccentricity vector of an orbit is 

defined as: 

r




v h re =  (2.5) 

In addition, its magnitude also provides information about the shape of an orbit. Depending on 

the eccentricity value, an orbit can be a circle, ellipse, parabola or a hyperbola. 

2.2 Solutions to the Two-Body Problem 

The motion of spacecraft which are governed by equation (2.2) can be categorized into 4 

types based on the initial radius vector and velocity vector. All of these types are the conic 

sections which are parabola, circle, ellipse and hyperbola as shown in Figure 2.1. The conic 

sections represent the shape of spacecraft trajectory or spacecraft orbits. The total energy and 

eccentricity give the information to determine the type of the orbit. The summarized 

characteristic of four different orbit types in terms of total energy and eccentricity is shown in 

Table 2.1. 
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Figure 2.1  Types of conic sections 

TABLE 2.1 

CHARACTERISTIC OF FOUR DIFFERENT ORBIT TYPES 
 

Orbit Type Circular Elliptic Parabolic Hyperbolic 

Total Energy ( E ) 0E   0E   0E   0E   

Eccentricity ( e ) 0e   0 1e   1e   1e   

 

Additionally, there are other orbits which 1e  and its angular momentum is always zero 

because its radius vector and velocity vector is always perpendicular. 

There are three other quantities related to an orbit, which will be mentioned later. These 

quantities are needed to be discussed. The first is flight path angle ( ). The second is radius-

sweeping area per time unit. The last is true anomaly angle ( ). 
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2.2.1 Flight Path Angle 

Flight path angle ( ) is a scalar quantity that defines the angle between local horizon 

direction and the velocity vector by measuring positively outward to the orbit as shown in Figure 

2.2 

 

 

Figure 2.2  Description of flight path angle 

This quantity can be computed by considering the magnitude of angular momentum as below. 

cosh rv   (2.6) 

Then, flight path angle is calculated by: 

1cos ( )rv

h
   (2.7) 

2.2.2 Radius-Sweeping Area per Time 

First of all, consider the differential area of triangle that swept by the radius as shown in 

Figure 2.3. 
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Figure 2.3  Triangle from sweeping radius 

 The differential area can be written as follows: 

 
1
2

dA r rd  (2.8) 

Where dA  is the differential area, r is radius which is the length of a triangle edge, d  is the 

differential angle of the area. This differential angle d  can be written in term of angular 

velocity and differential time interval as below 

d dt   (2.9) 

Substituting equation (2.9) into equation (2.8) lead to: 

 
1
2

dA
r r

dt
  (2.10) 

Noting that radius times angular velocity is equal to tangential velocity which is equal to cosv  . 

Then equation (2.10) can be rewritten as below: 

 
1 1cos
2 2

dA
r v h

dt
   (2.11) 

The equation (2.11) gives the relationship of the area which is swept by radius vector per time 

unit and angular momentum. Finally, the differential time of flight is stated as: 

2dA
dt

h
  (2.12) 
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2.2.3 True Anomaly Angle 

True anomaly angle ( ) is the angle measured from periapsis to radius vector in the 

direction of spacecraft orbital motion. So it is between 0 to 2  . The relation between true 

anomaly and radius is shown as below [24]: 

 

2

1 cos
h

r
e 




 (2.13) 

Since, 

2

2

21 Eh
e


   (2.14) 

Then, substitution equation (2.14) into equation (2.13) lead to 

2

2 22 cos
h

r
Eh  


 

 (2.15) 

2.3 Spacecraft Motion under Perturbing Forces 

Because the thrust provided by all-electric satellites is small, the thrust acceleration is 

much small compared to the local gravitational acceleration. Hence, the thrust force can be 

viewed as a perturbing force. Under the action of a perturbing force, there are slow changes in 

the orbital parameters and in the dynamical quantities of interest. In the presence of other forces 

such as thrust, the equation (2.2) is modified into as below: 

3r m

 Fr r= - +  (2.16) 

where F  is force vector or perturbation vector and m  is mass of the spacecraft. Equation (2.16) 

can explicitly be written in Cartesian coordinates as follows 

x xr v=  (2.17) 

y yr v=  (2.18) 

z zr v=  (2.19) 
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3
x

x x

F
v r

r m


= - +  (2.20) 

3
y

y y

F
v r

r m


= - +  (2.21) 

3
z

z z

F
v r

r m


= - +  (2.22) 

where xr , yr , zr  are the radius components in x, y, z axis, respectively. xv , yv , zv  are the 

velocity components and xF , yF , zF  are the perturbation forces in x, y, z axis, respectively. 

The presence of other forces imply that the dynamical quantities are no longer constants and 

their variations will be discussed in the next section. The spacecraft can be transferred to the 

destination orbit by this perturbation force which is controlled thrust. The example of continuous 

low-thrust orbit-raising is shown in Figure 2.4 by starting at an elliptical orbit on equatorial plane 

with 5000 km perigee altitude and 10000 km apogee altitude. The initial mass of spacecraft is 

5000 kg. The perturbation force is engine thrust generated by four Hall thrusters, so that thrust is 

1.16 N with specific impulse of 1788 s and is in the local horizon for a hundred days, so this is a 

case of planar transfer to GEO. Obviously from the figure, the spacecraft moves in spiral shape 

around the Earth for many revolutions and gradually increases its altitude.  
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Figure 2.4  Example of low-thrust trajectory of a planar case 

2.3.1 Variation of Total Energy 

Naturally, the total energy will be constant as long as there is no existing perturbation 

forces. However, in the presence of the perturbation forces, the total energy will change. In order 

to transfer the spacecraft into destination orbit, the total energy is driven to the value at the 

destination orbit. So, the variation of total energy due to the perturbation forces has to be 

considered. Its time rate of change could be computed by taking the dot product of velocity 

vector on both sides of equation (2.16). 

3( )
r m


   

Fr r r r  (2.23) 

Consider the left hand side of equation (2.23). From the chain rule of derivatives, 

1( )
2

d

dt
  r r r r    or   21( )

2
d

v
dt

 r r  (2.24) 

Then, consider the right hand side of equation (2.23), there is a term ( r r ). The term time rate of 

change of radius unit vector ( r̂ ) is perpendicular to r , because the rate of change of unit vector 
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has to be perpendicular to unit vector itself in order to keep the magnitude at unity. So r×r  is 

equal to 0. Then one can show that: 

 ˆ ˆ ˆ( )d
r r r rr

dt
     r r r r r r r =  (2.25) 

Then, multiply equation (2.25) by the term ( 3r
 ): 

   3 3 2

r d
rr

r r r dt r

       
    

 
r r =  (2.26) 

Substitute equation (2.24) and equation (2.26) into equation (2.23): 

21( )
2

d d
v

dt dt r m

  
  

 

F r
 (2.27) 

Adjust equation (2.27) and compare with equation (2.3). 

2 21 1( ) ( )
2 2

d d d
v v

dt dt r dt r m

   
     

 

F r
 (2.28) 

E
m




F r  (2.29) 

The time variation of total energy is shown as stated in equation (2.29). 

2.3.2 Variation of Angular Momentum Vector 

The angular momentum vector is also a constant as long as the perturbations do not exist. 

This dynamical quantity also has to be driven to the value of destination orbit. If the perturbation 

forces exist, its variation due to the perturbations can be computed by taking the cross product of 

radius vector into both side of equation (2.16). 

3( )
r m


   

Fr r r r  (2.30) 

Based on the chain rule for derivatives, an equation can be stated as below: 

     
d

dt
     r r r r r r r r+  (2.31) 
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Substitute the term ( r r ) on the left hand side of equation (2.30) by equation (2.31) and note 

that vectors cross into itself is equal to zero. 

 
d

dt m
  

Fr r r  (2.32) 

Substituting equation (2.4) into equation (2.32) leads to: 

m
 

Fh r  (2.33) 

The equation (2.33) stated the variation of angular momentum vector which is the combination 

of the rate of its magnitude and its direction. Therefore, an equation is formed as below: 

 ˆh
m

   
Fh r h ω h+  (2.34) 

where ω  is angular velocity vector that the vector (h ) rotates through the space. Then, let us 

consider if perturbation force vector ( F ) and other vectors in equation (2.26) are defined on the 

coordinates of radius vector ( r̂ ), local horizontal ( ˆnr ) and angular momentum ( ĥ ) which are 

related as ˆˆ ˆ nr r h , then equation (2.34) can be rewritten. Noting that ω  by definition is always 

perpendicular to h , so there is no component of ω  along h : 

 
  

ˆˆ ˆ
ˆ ˆˆ ˆ ˆr n h

r n

F F F
r h h

m
 

 
   

n
n

r r h
r h r r h+  (2.35) 

Simplifying the equation (2.35) results as: 

ˆ ˆˆ ˆ ˆn h
n r n

rF rF
h h h

m m
    nh r h r r  (2.36) 

Comparisons of equation (2.36) along each direction result as: 

nrF
h

m
  (2.37) 

0n   (2.38) 
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h
r

rF

mh
   (2.39) 

Equation (2.37), which is the result of comparison along ĥ , can be considered as the description 

of the variation of angular momentum magnitude. As comparisons along r̂  and ˆnr  are resulting 

equation (2.38) and equation (2.39) respectively, ω  has only one component along r̂ . Therefore, 

 can be stated as follows: 

ˆhrF

mh
ω r  (2.40) 

From the equation (2.40), the rotation of angular momentum is described by the right-hand rule 

which angular momentum rotates about radius due to the perturbation along ĥ . As shown in the 

Figure 2.5, the thrust along angular momentum does not change the magnitude of angular 

momentum. However it changes the direction of angular momentum by rotating about radius 

vector as dash vector shown in Figure 2.5. The dash orbit in Figure 2.5 shows the corresponding 

change in terms of orbital orientation due to the thrust. 

 

Figure 2.5  The rotation direction of angular momentum vector 
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2.3.3 Variation of Eccentricity Vector 

In the case that the perturbation exists, the eccentricity is also changed. Its variation could 

be calculate by cross product of h  into equation (2.16) 

   3 3

1( )
r m r m

  
      

Fr h r h r h F h=  (2.41) 

From the chain rule of derivatives: 

     
d

dt
    r h r h r h  (2.42) 

Adjusting equation (2.42) lead to: 

     
d

dt
    r h r h r h  (2.43) 

Consider the term ( r h ) which is on the right hand side of equation (2.41). From Equation (2.4) 

and vector triple product rule, this term becomes: 

           r h r r r r r r r r r=  (2.44) 

From equation (2.25) and that r  dot product into itself is equal to 2r , the equation (2.44) can be 

written as: 

   2rr r r h r r=  (2.45) 

Multiplying equation (2.45) by 3r  and using chain rule for derivatives: 

   2
3 2

r
r

r r

   
  

 
r h r r= - +  (2.46) 

 3

d

r dt r

   
  

 
r h r=  (2.47) 

Substitution of equation (2.43) and equation (2.47) into equation (2.41) leads to: 

     
1d d

dt dt r m

 
      

 
r h r h r F h  (2.48) 

Adjusting the equation (2.48) results as: 
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   
1 1d

dt r m  

 
    

 

r h r v h F h-  (2.49) 

Substituting equation (2.5) and equation (2.33) into equation (2.49) leads to: 

   
1
m

      e v r F F h  (2.50) 

These variations of dynamical quantities constitute the variational equations of motion 

for the spacecraft. In the next chapter, the demonstration of using these equation in the context of 

trajectory optimization are discussed. 
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          CHAPTER 3 

3. PROBLEM DESCRIPTION AND SOLUTION METHOD 

As mentioned earlier about the benefits of all-electric orbit raising, the problem in this 

research is the minimum-time transfer for deploying electric thrusters from LEO or GTO to GEO 

by. In this chapter, the detail of problem is discussed and the method which is used to solve the 

problem is also explained. 

3.1 Problem Descriptions 

The information related to the problem is given in this section including the GEO, the 

electric thruster and model of the eclipse. 

3.1.1 Geostationary Earth Orbit 

 

Figure 3.1  Graphical explanation of GEO (Not to Scale) 

GEO is a circular orbit around the Earth in the equatorial plane. Its orbital period is one 

sidereal day matching with Earth rotation period. The observers on the surface of the Earth 

would found that any object in this orbit is always at the same point in the sky. The satellite 

antennas that communicate with them can be permanently fixed to a satellite location in the sky. 
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In a technical term, the GEO is defined by Inter-Agency Space Debris Coordination [25] 

(IADC) as a circular orbit which has altitude 35786 km with 0 degree inclination. In addition, 

GEO region is also defined by IADC as lower altitude and upper altitude are equal to GEO 

altitude minus 200 km and plus 200 km, respectively. Then, the graphical explanation of GEO is 

shown in Figure 3.1. From this definition, we can further compute the other quantity of GEO 

region for obtaining result as below: 

,min 41964GEOa   to   ,max 42364GEOa   km (3.1) 

,min 0GEOe   to   ,max 0.004743GEOe    (3.2) 

,min 4.7493GEOE    to   ,max 4.7045GEOE    km2/s2 (3.3) 

,min 129332GEOh   to   ,max 129947GEOh   km2/s (3.4) 

As the consequences of being circular orbit, GEO has no periapsis or apoapsis. GEO can be 

completely defined by only the pair of total energy and angular momentum. 

3.1.2 Electric Thruster 

Thrust, force generated by the engines, will be defined by 3 parameters. The first 

parameter is the magnitude of the thrust (T ). The direction of thrust is defined by 2 angles, one 

in the orbit plane ( ) and the other out-of-the plane (  ).   is measured from the local horizon 

vector and is consider to be positive if it rotates into the central body. And,   is measured from 

the orbital plane and is considered to be positive if it tilts into angular momentum vector as 

shown in Figure 3.2. 
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Figure 3.2  Definition of Thrust Vector 

Specific impulse ( spI ) is the characteristic of engines. This parameter is related to the 

rate of change of fuel mass. The relation is given by: 

0 sp

T
m

g I
   (3.5) 

where 0g  is gravitational acceleration at surface of the earth which is 9.81 m/s2. 

3.1.3 Modeling Shadow of the Earth 

When the satellite moves into the eclipse, there will be lack of the power to provide to the 

engine unless deploying the other power storages. In the methodology presented in this thesis, 

the thrust is assumed to be zero, if the satellite moves into eclipses. The shadow geometry is 

assumed to be cylindrical with its length stretching to infinity pointing from the center of the 

Earth in the direction opposite to the sun and with the radius equal to the radius of the Earth as 

shown in Figure 3.3. In the Figure 3.3, the sun is assumed to lie on the negative side of x-axis, so 

the eclipses are stretching from the origin into positive infinity of x-axis with radius equal to 

radius of the Earth. Furthermore, the position of the sun in this problem is assumed to be 

stationary, thus eclipse geometry do not change over time. In reality, the eclipse orientation 
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changes as the Earth revolves round the Sun  in its orbit; however, we neglect this variation in 

the thesis. 

 

Figure 3.3  Shadow geometry stretching to infinity 

We can, therefore, form the conditions which can be used to specify the presence of spacecraft in 

the shadow of the Earth in Cartesian coordinates as follows: 

0x     and   2 2
Ey z r   (3.6) 

where 
Er  is the radius of the Earth. When the satellites move into the eclipse, there will be lack 

of power to provide to the engine unless onboard batteries are used because the solar panel 

cannot generate the power for the engines to operate. The satellite has no onboard batteries. 

Then, the condition in equation (3.6) can be stated as below: 

2 2

max

0, 0
, otherwise

if x and y z r
T

T

   
 


 (3.7) 

where maxT  is maximum thrust. For examples of orbit-raising with eclipse consideration, the 

trajectories are shown in Figure 3.4. On the left of Figure 3.4, the initial orbit is 5000 km 

periapsis altitude and 15000 km apoapsis altitude, and on the right the initial orbit is circular 

orbit with 5000 km altitude. For both cases, thrust is generated by four Hall thrusters in local 
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horizon direction, so maximum thrust is 1.16 N with specific impulse of 1788 s. Initial mass is 

5000 kg for both cases. 

 

Figure 3.4  Trajectories of elliptical orbit (left) and circular orbit (right) with absence of thrust in 

eclipse which is the dash line 

3.2 Methodology 

A new methodology is developed in this thesis to determine the low-thrust trajectories in 

eclipses. As mentioned before, this methodology brings together the ideas of direct optimization 

and guidance-like schemes. More specifically, the methodology improves upon the work of 

Marasch and Hall [7] to determine the low-thrust trajectory in eclipses starting from arbitrary 

orbits. 

3.2.1 Concepts of Methodology and Assumption 

There are two main concepts for this methodology. The first concept comes from Marash 

and Hall [7] which is that break the problem into optimization over a single revolution sub-
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problems, each. The second concept comes from the closed-loop guidance scheme which that 

reducing the deviation between current state and destination state as fast as possible. 

Three assumptions are made for simplifying the problem. The first assumption is that the 

shape of an orbit are not changed during a revolution. The second assumption is that the 

projection of vector that points to apsis on the equatorial plane does not rotate for the entire 

trajectory and lies on x-axis as well as angular momentum. This assumption comes from the 

observation the solutions of electric-orbit raising to GEO problem [21, 22] that the direction of 

apsis do not change significantly. The third assumption is that the angle that angular momentum 

direction changes in each revolution is small. This assumption leads to that the rotation of 

angular momentum vector can be considered as infinitesimal rotations. The angle rotated can be 

considered as a vector [26]. 

3.2.2 Objective Function 

In order to achieve research objectives, the closed-loop guidance-like schemes is selected 

as discussed earlier in Chapter 1. In the literature [20-22], this kind of methodology solves the 

minimum transfer time problem by aiming to reduce the gap between current orbit and 

destination orbit as fast as possible. Then, the thrust profiles are determined based on this 

concept. In other words, the solution is the thrust profiles that satisfies objective function stated 

below: 

 
2

,min j j GEO j

j N

w P P


 
 

 
  (3.8) 

where N  is the number of orbital parameters which is used to defined the GEO, jw  is the 

weight parameter for each dynamical quantity, ,GEOjP  is the value of each dynamical quantity at 

the GEO, jP  is the value of each dynamical quantity at the end of current revolution. 
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A. Planar Case 

In this case, the orientation of the orbit is not considered. Then, GEO can be defined by a 

pair of dynamical quantities which are described earlier. We consider two different objective 

functions Type I and Type II. For Type I, a pair of total energy and eccentricity is selected, so the 

objective function in equation (3.8) can be rewritten as follows: 

   
22

1 2min GEO GEOw e e w E E   
  

 (3.9) 

where e  and E  are the eccentricity and total energy at the end of current revolution. 

For Type II, a pair of angular momentum and total energy is chosen, then the objective function 

in equation (3.8) is rewritten as follow: 

   
2 2

1 2min GEO GEOw h h w E E   
  

 (3.10) 

B. Non-Planar Case 

In this case the orientation of trajectory has to be considered. The angular momentum of 

current orbit is needed to be aligned with z axis. In order to measure the deviation in terms of 

orientation from destination, we define a new vector ( I ) on the orbit plane. The magnitude of 

this vector is equal to the inclination angle of the orbit which is in between 0 to 2 . And the 

direction of this is along the direction of angular velocity on the orbit plane which rotates the 

angular momentum into z axis. The graphical definition of vector is depicted in Figure 3.5. 

Therefore, from the definition given, the magnitude of this vector can be computed as follows 

1 ˆ ˆcos ( )I   I h k  (3.11) 

where k̂  is a unit vector along z axis. And its direction is computed by 
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ˆ ˆˆ
ˆ ˆ





h kI
h k

 (3.12) 

From the definition given by equation (3.12) and the second assumption, vector I   always lies 

on y axis. So vector I  can be written as: 

ÎI j=  (3.13) 

Then, based on these parameters which have been defined, the objective function in non-

planar case can be formed. In order to rotate the angular momentum into z-axis, the rotate angle 

of angular momentum need to be close to vector I . Due to equation (3.13), vector I  has only 

one component on y-axis, then the rotate angle on other direction need to be zero. Then the 

objective functions Type I for non-planar case is formed as follow: 

   
22 2 2

1 2 3 4min ( ) (0 )GEO GEO y ew e e w E E w I A w A       
  

 (3.14) 

where eA  is the angle accumulated over one revolution on the x-z plane. yA  is the angle 

accumulated over one revolution in the direction of y- axis. 

And Type II is formed as: 

   
2 2 2 2

1 2 3 4min ( ) (0 )GEO GEO y ew h h w E E w I A w A       
  

 (3.15) 
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Figure 3.5  Graphical Definition of Vector I  

3.2.3 Direct Optimization Scheme 

The direct optimization is performed over a single revolution. At the beginning, the 

current orbit or initial orbit will be divided into a small segments by the same size of true 

anomaly angle from 0 0   to 2n  as shown in 

 

Figure 3.6  Segments of an orbit along true anomaly angle 

The radius at each segment ( jr ) can be calculated by the equation (2.15) by the initial value of 

total energy and angular momentum. Then, the radius at each segment is computed as below 
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2

2 22 cos
j

j

h
r

Eh  


 
 where 0,1,...,j n  (3.16) 

Then numerical radius ( jr ) for each segment is computed by the average of jr  at the edges so it 

can be calculated as follows: 

1

2
j j

j

r r
r

 
  where 1,2,...,j n  (3.17) 

After that, the numerical velocity ( jv ) for each segment is computed by using the equation (2.3) 

as below. 

2 2j

j

v E
r


   where 1,2,...,j n  (3.18) 

The numerical time ( jt ) which spacecraft spend at each segment is computed based on equation 

(2.12) so it is written as below 

1 1( )( )sin( )j j j j

j

r r
t

h

  
  where 1,2,...,j n  (3.19) 

After that, the flight path angle at each segment ( j ) is calculated by equation (2.7): 

 11

1

cos ( ) if
2

cos ( ) otherwise

j j

j j

j

j j

h

r v

h

r v

 








 
 


 





 where 1,2,...,j n  (3.20) 

Due to presences of spacecraft in eclipses, the magnitude of the thrust is determined as below 

1 1

max

0, if cos( ) 0 and sin( )
2 2

, otherwise

j j j j

j j

j

r r r
T

T

      
 

 



  

where 1,2,...,j n  

(3.21) 
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A. Planar Orbit-Raising Case 

Due to presences of spacecraft in eclipses, the magnitude of the thrust is determined as below 

1 1

max

0, if cos( ) 0 and sin( )
2 2

, otherwise

j j j j

j j

j

r r r
T

T

      
 

 



  

where 1,2,...,j n  

(3.22) 

Due to the planar case, there is no components of the thrust which is out of the orbital plane. 

Then, the small change of total energy in each segment is approximately calculated by applying 

the equation (2.29): 

cos( )j

j j j j j

T
E v t

m
    where 1,2,...,j n  (3.23) 

Also, the small change of angular momentum in each segment is approximately calculated by 

applying the equation (2.37) 

cos( )j

j j j j

T
h r t

m
  where 1,2,...,j n  (3.24) 

At the end of the revolution, the total energy E  and angular momentum h  is the summation of 

the small changes within a revolution, so they can be expressed by 

1

n

j

j

E E E


   (3.25) 

1

n

j

j

h h h


   (3.26) 

In order to compute Type I objective function, the eccentricity at the end of revolution is 

computed by equation (2.14) as follows: 
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2

2

21 Eh
e


   (3.27) 

At this point, the planar case problem can be solved by non-linear programming solver, fmincon 

in MATLAB®. Type I objective function is formed by substitute equation (3.25) and equation 

(3.26) into equation (3.9). Likewise, Type II objective function is formed by substitute equation 

(3.25) and equation (3.27) into equation (3.10). Once variable j  is given by the solver, the next 

literature will be started with these E  and h  as initial value. The process for planar transfer is 

shown in  

 

Figure 3.7  Flow chart of optimization process for planar case 
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B. Non-Planar Orbit-Raising Case 

In non-planar case, the process is similar to planar case except the addition of orientation 

consideration. The angle   that defines the out-of-plane direction of the thrust is needed. From 

the definition of angle   which is given earlier and equation (3.23), the small change of total 

energy in each segment is computed by adding angle   in the formulation as below: 

cos( )cos( )j

j j j j j j

T
E v t

m
     where 1,2,...,j n  (3.28) 

Likewise, the small change of angular momentum in each segment is computed as follows: 

cos( )cos( )j

j j j j j

T
h r t

m
   where 1,2,...,j n  (3.29) 

Then, the total energy and angular momentum at the end of revolution can be obtained by 

equation (3.23) and (3.24), respectively. For Type I objective function, eccentricity can be obtain 

by equation (3.27). 

For non-planar transfer, in order to align the orbit into the equatorial plane, the inclination 

has to be driven to zero. The equation (2.40), give the rotation direction of angular momentum 

vector due to the perturbation forces. As the matter of fact that angles can be considered as 

vectors, if these angles are the infinitesimal rotations or these angles are very small [26]. The 

angle that change in each segment is assumed to be small and can be computed as below. 

1
e, sin( )cos( )

2
j j j j

j j j

T r
A t

mh

 



  where 1,2,...,j n  (3.30) 

1
y, sin( )sin( )

2
j j j j

j j j

T r
A t

mh

 



  where 1,2,...,j n  (3.31) 
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where e, jA  and p, jA  the small angle that rotate in the direction of projections of x-axis and y-

axis on the orbit plane ,respectively. The angle in equation (3.30) and (3.31) is assumed to be 

small, so the angle that change in one revolution is expressed as below: 

e,
1

n

e j

j

A A


  (3.32) 

y,
1

n

y j

j

A A


  (3.33) 

In order to drive inclination angle to zero, eA is needed to be zero and pA  is need to be equal to 

I  which are described in equation (3.13). At this point, the non-planar case problem can be 

solved by non-linear programming solver.  
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          CHAPTER 4 

4. ALL-ELECTRIC ORBIT-RAISING SCENARIOS 

The engine is selected to be BPT-4000 Hall thrusters because they are suitable for both 

small and large class of telecommunication satellites. For all scenarios, the four BPT-4000 

thrusters are operated simultaneously. This is possible for large telecommunication satellites 

which has wide solar panels to provide the required power for the thrusters. The total thrust 

generated by these thrusters is 1.16 N at a specific impulse of 1788s. All the physical quantities 

are represented in non-dimensional units. The radius of GEO is defined as 1 distance unit (DU), 

whereas the time unit (TU) is such that Earth’s gravitational constant is equal to 1 DU3/TU2. For 

the mass unit (MU), the initial mass of the spacecraft is defined to be equal to 1 MU. 

The initial orbits for the problem are circular, elliptical and GTO. The same initial orbits 

are considered to investigate all scenarios. For the circular cases, the initial altitude are 1000, 

3000, 5000, 10000, 16000 km. For the elliptical cases, all perigee of initial orbit is 220 km, the 

apogee are 10000, 20000, 30000, 40000 and 50000 km. For the GTO as initial orbits, the apogee 

is equal to altitude of GEO and the perigee are 4000, 6000, 8000 and 10000 km.  

4.1 Trajectory Optimization without Eclipse Considerations in Planar Case 

First, the transfer of a satellite is performed without the consideration of eclipses. In this 

case, the spacecraft continuously thrusts during the entire transfer. The results are determined 

with the two objective functions. The type I transfer use equation (3.9) as the objective function, 

and the type II use equation (3.10) as the objective function. The transfer times are shown in 

Table 4.1. In comparison of both transfers, the type I transfer show the shorter transfer times for 

all cases. The reason is that the apoapsis of trajectories in type I do not move far from the GEO. 

The apoapsis of trajectories in type II move far beyond GEO which means that the orbit period 

for a revolution is longer. 



 

38 

The trajectory of type I and type II are shown in Figure 4.1 and Figure 4.2, respectively. 

The initial orbit for both transfers is GTO with 10000 km perigee altitude. It is clearly seen that 

the apoapsis of transfer trajectory from type II moves further away beyond GEO than the 

apoapsis of transfer trajectory from type I. The reason is that the eccentricity in type I objective 

function induces the shape of trajectory as close to be circular shape as possible. 

 

TABLE 4.1 

TRANSFER TIME WITHOUT ECLIPSE CONSIDERATION IN PLANAR CASE 

 

 

 

 

 

 

 

 

 

 

 

 

Initial Orbit 
Initial 
Mass 
(kg) 

Transfer Time (days) 

Perigee altitude 

(km) 

Apogee 

altitude 

(km) 

Type II  Type I 

Transfer 
Transfer 

1000 1000 7300 286.11 279.19 
3000 3000 7300 238.87 229.9 
5000 5000 7300 200.99 193.35 

10000 10000 4631 87.29 84.21 
16000 16000 3173 38.69 37.86 

220 10000 7300 227.59 214.46 
220 20000 6716 183.5 164.73 
220 30000 6485 167.31 146.87 
220 40000 5974 149.68 128.1 
220 50000 5640 142.5 118.75 
4000 35786 4314 89.24 78.6 
6000 35786 3873 73.7 65.25 
8000 35786 3559 61.23 53.08 

10000 35786 3319 55.18 45.2 
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Figure 4.1  Type I transfer from GTO to GEO 

 

Figure 4.2  Type II transfer from GTO to GEO 
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4.2 Trajectory Optimization with Eclipse Considerations in Planar Case 

In this section, the absence of the thrust due to eclipse is accounted for. All initial orbits 

are identical to previous cases. The results are generated from type I and type II transfers as 

shown in Table 4.2. The transfer times of eclipse consideration are longer than without eclipse 

consideration as expected. The transfer time, which is increased due to the effect of eclipse, is 

reduced by starting at higher altitude initial orbit. 

The trajectories in Figure 4.3 and Figure 4.4 has the same initial orbit which is GTO with 

10000 km periapsis altitude. For the eclipse consideration, the apoapsis of type I and type II 

move in the same trend as without eclipse consideration. For both types, there is an increase in 

transfer time compared to the without eclipse cases. The trend is such that, for the low altitude 

initial orbits the percentage increase in transfer time is high. But, for the high altitude initial orbit 

the percentage increase in transfer time is low. The reason is that at high altitudes, the time 

period of spacecraft in eclipse is comparatively low. 
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TABLE 4.2 

TRANSFER TIME WITH ECLIPSE CONSIDERATION IN PLANAR CASE 

 

 

 

 

 

 

 

 

 

 

Initial Orbit 
Initial Mass  

(kg) 

Transfer Time (days) % increase 

Perigee 
altitude 

(km) 

Apogee 
altitude 

(km) 

Type II  
Transfer 

Type I 
Transfer 

Type II  
Transfer 

Type I  
Transfer 

1000 1000 7300 358.2 334.28 25.20 19.73 
3000 3000 7300 278.69 263.53 16.67 14.63 
5000 5000 7300 232.83 215.51 15.84 11.46 
10000 10000 4631 111.16 91.02 27.35 8.09 
16000 16000 3173 43.96 39.85 13.62 5.26 
220 10000 7300 251.5 226.52 10.51 5.62 
220 20000 6716 199.55 169.28 8.75 2.76 
220 30000 6485 167.3 151.21 -0.01 2.95 
220 40000 5974 138.83 132.74 -7.25 3.62 
220 50000 5640 129.81 120.62 -8.91 1.57 
4000 35786 4314 91.01 80.98 1.98 3.03 
6000 35786 3873 79.76 66.16 8.22 1.39 
8000 35786 3559 70.79 54.83 15.61 3.30 
10000 35786 3319 58.6 45.75 6.20 1.22 
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Figure 4.3  Type I transfer from GTO to GEO with eclipse consideration 

 

Figure 4.4  Type II transfer from GTO to GEO with eclipse consideration 
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4.3 Trajectory Optimization with Eclipse Considerations in Non-Planar Case 

In this case, the initial orbit is not on the equatorial plane. The inclination angle of the 

initial orbit is not equal to zero. The transfer times of type II transfer are shown in TABLE 4.3. 

 
TABLE 4.3 

TRANSFER TIME WITH ECLIPSE CONSIDERATION IN NON-PLANAR CASE 

 

 The 

trajectory of the case that has GTO as initial orbit with 30000 km altitude perigee and 28.5 

inclination angle is shown in Figure 4.5. For clarity, Figure 4.6 and Figure 4.7 provide the 

projections of the trajectory on x-y plane and x-z plane, respectively. 

Initial Orbit Inclination 
Angle 

(Degree) 

Initial Mass 
(kg) 

Transfer Time  
(days) 

Perigee 
altitude (km) 

Apogee 
altitude (km) 

Type II  
Transfer 

1000 1000 28.5 8687 462.12 

2000 2000 28.5 7085 358.32- 

10000 35786 15 4392 81.56 

20000 35786 15 3551 55.64 

30000 35786 15 3130 44.74 

10000 35786 28.5 7002 201.50 

20000 35786 28.5 5471 147.40 

30000 35786 28.5 4784 127.64 
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Figure 4.5  Type II transfer from GTO with inclination of 28.5 degree to GEO with eclipse 
consideration 

 

Figure 4.6  Projection of type II transfer from GTO with inclination of 28.5 degree to GEO on x-y 
plane with eclipse consideration 
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Figure 4.7  Projection of type II transfer from GTO with inclination of 28.5 degree to GEO on x-z 
plane with eclipse consideration 

Additionally, the trajectory of the case that has the same initial orbit except that the 

inclination angle is equal to 15 is demonstrated in Figure 4.8. The projection of this trajectory on 

x-z plane is also shown in Figure 4.9. 

 

Figure 4.8  Type II transfer from GTO with inclination of 15 degree to GEO with eclipse 
consideration in 3D 
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Figure 4.9  Projection of type II transfer from GTO with inclination of 15 degree to GEO on x-z 
plane with eclipse consideration 

4.4 Trajectory Optimization with Switching Engine in Planar case 

In order to reduce the exposure time to the radiation belts, the scenarios which the higer 

thrust is used, is analyzed. However, engine should be switched to the one that has more fuel 

saving after satellite goes beyond the radiation regions. In order to keep the same amount of 

satellite power, at the initial orbit, the engines are ten Arcjet thrusters each of which has a 

specific impulse of 502 s and thrust 0.254 N, and so the overall thrust is 2.54 N. When the 

perigee altitude reaches the switching altitude the engines are switched to 4 Hall thruster. The 

transfer time is calculated for all initial orbits at 3 switching altitudes 5000, 10000 and 15000 km 

as shown in Table 4.4. 

Some initial orbits have the same transfer time for different switching altitudes because the initial 

orbit exceeds the switching altitude. The high switching altitude obviously gives a short transfer 
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time. The scenario of switching engines has advantages in term of reduction in exposure time to 

Van Allen belts by thrusting with higher magnitude in hazardous region. 

TABLE 4.4 

TRANSFER TIME OF ENGINE SWITCH SCENARIO 

Initial Orbit 
Initial 

Mass (kg) 

Transfer Time (day) 

Perigee altitude 
(km) 

Apogee 
altitude 

(km) 
5000 km 10000 km 15000 km 

1000 1000 7300 197.68 166.07 128.42 
3000 3000 7300 194.86 148.95 123.04 
5000 5000 7300 202.47 144.44 121.60 

10000 10000 4631 101.95 100.04 66.83 
16000 16000 3173 44.07 44.07 44.07 

220 10000 7300 163.62 134.32 116.59 
220 20000 6716 135.28 114.55 104.30 
220 30000 6485 121.08 101.44 94.52 
220 40000 5974 109.09 94.02 92.04 
220 50000 5640 101.66 98.81 80.81 

4000 35786 4314 77.28 66.37 67.50 
6000 35786 3873 70.30 60.95 54.72 
8000 35786 3559 59.85 56.46 45.11 

10000 35786 3319 53.40 53.40 42.01 
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          CHAPTER 5 

5. CONCLUSION AND FUTURE WORK 

All-electric satellites are now gaining favor among satellite manufacturers and operators 

of telecommunication satellites due to their significant benefits of fuel and cost savings. 

However, due to the low thrust of electric thrusters, the transfer to GEO takes significantly long 

time, thereby having several implications. From mission design point of view, obtaining the 

optimal trajectory for electric thrusters to the GEO is a complex problem, compared to a problem 

of chemical thrusters, taking into account the non-linear dynamics, eclipse constraints, provision 

of energy storage and solar array degradation. Also, long exposure to Van Allen radiation leads 

to radiation degradation of solar arrays along the path. Finally, electric orbit-raising represents a 

long waiting time for deploying satellites, so there are implications on the business aspect of 

satellite operators. This thesis presents a new algorithm to generate low-thrust trajectories 

suitable for use in mission analysis tools that aim to rapidly analyze multiple mission scenarios. 

In order to obtain the solution, model of spacecraft dynamics around the Earth was 

analyzed by considering two-body problem and cylindrical shadow of the Earth. The rate of 

change of dynamical quantities are derived. These dynamical quantities are constants in the 

absence of non-gravitational forces, but change slowly in the presence of external forces. The 

low-thrust generated by the electric engines justifies the consideration of engine thrust as a 

perturbing force. 

In the proposed technique, the long spiral trajectory of electric orbit-raising is broken into 

many parts, each comprised by a single revolution. Then, the optimal thrust profile is determined 

over a single revolution by using a direct optimization methodology. The objective function used 

is typical of a guidance-like scheme and minimizes the differences of dynamical quantities 
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between current states and the GEO. A sequence of such optimizations are carried out until the 

orbit can be considered to be GEO. The formulation is a combination of direct optimization and 

closed-loop guidance-like scheme. 

The proposed methodology improves upon the work of Marasch and Hall [7] in the sense 

that it is applicable to any starting orbit. Ref. [7] methodology is suitable for planar circle-to-

circle transfer only. The proposed formulation is not restricted to starting circular orbit. The 

initial orbit can be circular or elliptical. Moreover, the formulation of this method is capable of 

providing the solution for non-planar cases. 

Two different objective types are considered. Type I transfer minimizes the deviation of 

total energy and eccentricity of final position from the GEO. Type II transfer minimizes the 

deviation of total energy and angular momentum of the final position from the GEO. The 

differences between trajectories from each type are illustrated in this thesis for several mission 

scenarios. The apoapsis of trajectory from type I does not deviate far from the GEO, but 

appoapsis of trajectory from type II does. The reason is that the eccentricity in type I objective 

explicitly forces the trajectory to be circular come at a faster rate. On the other, the parameters in 

type II do not. This difference leads to the transfer time of the type I being shorter because the 

trajectory does not go far from the Earth. The proposed methodology is also suitable for 

analyzing the engine types switch at some altitude. Such scenarios have never been investigated 

before and could potentially reduce transfer time by combining arcjet and Hall thruster, instead 

of just using Hall thrusters alone. Of course, this advantage comes at the cost of a mass penalty. 

The proposed formulation does not have any singularity at GEO as Q-law [21, 22] does.  

Owing to this advantage, the final orbit achieved could be GEO. In contrast, the final orbit 
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obtained by using Q-law is often far from GEO and has an eccentricity of the order of 0.01 when 

starting from circular orbits, and of the order of 0.001 when starting from elliptic orbits. 

Future extensions of this work are: 

1. Consideration of energy storage to support thrusters in eclipses, 

2. Use of Hermite–Simpson and more accurate discretization scheme instead of the 

trapezoidal discretization used in direct optimization, 

3. Comprehensive mission scenario analysis using the developed tool to determine 

best deployment mechanism for all-electric satellites, 

4. Application of the methodology in other orbital transfer problem, e.g. rendezvous 

problem 

  



 

51 

 

 

 

 

 

 

 

 

 

6. REFERENCES 

  



 

52 

REFERENCES 
 

[1] Dutta, Atri, Libraro, Paola, Kasdin, Jeremy N. and Choueiri, Edgar, "A Direct 
Optimization Based Tool to Determine Orbit-Raising Trajectories to GEO for All-
Electric Telecommunication Satellites," AIAA/AAS Astrodynamics Specialist Conference, 
Minneapolis, MN, 2012. http://dx.doi.org/10.2514/6.2012-4589  

 
[2] Betts, John T., "Survey of Numerical Methods for Trajectory Optimization," Journal of 

Guidance, Control, and Dynamics, Vol. 21, No. 2, 1998, pp. 193-207. 
 
[3] Conway, Bruce A., "A Survey of Methods Available for the Numerical Optimization of 

Continuous Dynamic Systems," Journal of Optimization Theory and Applications, Vol. 
152, No. 2, 2012, pp. 271-306. 

 
[4] Pontani, Mauro and Conway, Bruce A., "Optimal Low-Thrust Orbital Maneuvers via 

Indirect Swarming Method," Journal of Optimization Theory and Applications, Vol. 162, 
No. 1, 2014, pp. 272-292. 

 
[5] Thorne, James D. and Hall, Christopher D., "Approximate initial Lagrange costates for 

continuous-thrust spacecraft," Journal of Guidance, Control, and Dynamics, Vol. 19, No. 
2, 1996, pp. 283-288. 

 
[6] Thorne, James D. and Hall, Christopher D., "Minimum-Time Continuous-Thrust Orbit 

Transfers Using the Kustaanheimo-Stiefel Transformation," Journal of Guidance, 

Control, and Dynamics, Vol. 20, No. 4, 1997, pp. 836-838. 
 
[7] Marasch, Mark W. and Hall, D., "Application of Energy Storage to Solar Electric 

Propulsion Orbital Transfer," Journal of Spacecraft and Rockets, Vol. 37, No. 5, 2000, 
pp. 645-652. 

 
[8] Gil, Philip E. , Murray, Walter  and Saunder, Michael A. , "SNOPT: An SQP Algorithm 

for Large-Scale Constrained Optimization," Society for Industrial and Applied 

Mathematics, Vol. 47, No. 1, 2005, pp. 99-131. 
 
[9] Wachter, Andreas and T., Biegler Lorenz, "On the implementation of an interior-point 

filter line-search algorithm for large-scale nonlinear programming," Mathematical 

Programming, Vol. 106, No. 1, 2005, pp. 25–57. 
 
[10] Vanderbei, Robert J., "LOQO:an interior point code for quadratic programming," 

Optimization Methods and Software, Vol. 11, No. 1-4, 1999, pp. 451-484. 
 
[11] Falck, Robert and Dankanich, John, "Optimization of Low-Thrust Spiral Trajectories by 

Collocation," AIAA/AAS Astrodynamics Specialist Conference, Minneapolis, MN, 2012. 
http://dx.doi.org/10.2514/6.2012-4423  

http://dx.doi.org/10.2514/6.2012-4589
http://dx.doi.org/10.2514/6.2012-4423


 

53 

REFERENCES (continued) 
 
 
 
[12] Libraro, Paola, Kasdin, Jeremy N., Dutta, Atri and Choueiri, Edgar, "Application of a 

Quaternion-Based Formulation to the Electric Orbit-Raising of GEO Satellites from 
High-Inclination Injection Orbits," AIAA/AAS Astrodynamics Specialist Conference, San 
Diego, CA, 2014. http://dx.doi.org/10.2514/6.2014-4426  

 
[13] Petropoulos, Anastassios E. and Longuski, James M., "Shape-Based Algorithm for the 

Automated Design of Low-Thrust, Gravity Assist Trajectories," Journal of Spacecraft 

and Rockets, Vol. 41, No. 5, 2004, pp. 787-796. 
 
[14] Petropoulos, Anastassios E., "A shape-based approach to automated, low-thrust, gravity-

assist trajectory design," Ph.D., Department of School of Aeronautics and Astronautics, 
Purdue University, Lafayette, IN, 2001. 

 
[15] Vasile, M., Pascale, P. De and Casotto, S., "On the optimality of a shaped-based 

approach based on pseudo-equinoctial elements," 57th International Astronautical 

Congress, 2006. http://dx.doi.org/10.2514/6.IAC-06-C1.4.05  
 
[16] Bradley, Wall, "Shape-Based Approximation Method for Low-Thrust Trajectory 

Optimization," AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, 
Hawaii, 2008. http://dx.doi.org/10.2514/6.2008-6616  

 
[17] Wall, Bradley J. and Conway, Bruce A., "Shape-Based Approach to Low-Thrust 

Rendezvous Trajectory Design," Journal of Guidance, Control, and Dynamics, Vol. 32, 
No. 1, 2009, pp. 95-101. 

 
[18] Novak, D. M. and Vasile, M., "Improved Shaping Approach to the Preliminary Design of 

Low-Thrust Trajectories," Journal of Guidance, Control, and Dynamics, Vol. 34, No. 1, 
2011, pp. 128-147. 

 
[19] Abdelkhalik, Ossama and Taheri, Ehsan, "Shape Based Approximation of Constrained 

Low-Thrust Space Trajectories using Fourier Series," Journal of Spacecraft and Rockets, 
Vol. 49, No. 3, 2012, pp. 535-546. 

 
[20] Kluever, Craig A., "Simple Guidance Scheme for Low-Thrust Orbit Transfers," Journal 

of Guidance, Control, and Dynamics, Vol. 21, No. 6, 1998, pp. 1015-1017. 
 
[21] Petropoulos, Anastassios E., "Simple Control Laws for Low-Thrust Orbit," AIAA/AAS 

Astrodynamics Specialist Conference and Exhibit, Big Sky, MT, 2003.  
 
[22] Petropoulos, Anastassios E., "Low-Thrust Orbit Transfers Using Candidate Lyapunov 

Functions with a Mechanism for Coasting," AIAA/AAS Astrodynamics Specialist 

Conference and Exhibit, Providence, RI, 2004. http://dx.doi.org/10.2514/6.2004-5089  

http://dx.doi.org/10.2514/6.2014-4426
http://dx.doi.org/10.2514/6.IAC-06-C1.4.05
http://dx.doi.org/10.2514/6.2008-6616
http://dx.doi.org/10.2514/6.2004-5089


 

54 

REFERENCES (continued) 
 
 
 
[23] Falck, Robert D., Sjauw, Waldy K. and Smith, David A., "Comparison of Low-Thrust 

Control Laws for Applications in Planetocentric Space," 50th AIAA/ASME/SAE/ASEE 

Joint Propulsion Conference, Cleveland, OH, 2014. http://dx.doi.org/10.2514/6.2014-
3714  

 
[24] Prussing, John E. and Conway, Bruce A., Orbital Mechanics, 2 ed., Oxford University 

Press, 198 Madison Avenue, New York, NY 10016, 2012.  
 
[25] Coordination, Inter-Agency Space Debris, "IADC Space Debris Mitigation Guidelines." 

1 ed. Vol. 22.4, German Aerospace Center, September 2007. 
 
[26] Kleppner, Daniel and Kolenkow, Robert J., An Introduction to Mechanics, Cambridge 

University Press, Cambridge, UK, 2010.  
 
 

http://dx.doi.org/10.2514/6.2014-3714
http://dx.doi.org/10.2514/6.2014-3714

